

Introduction:

Figure 12.1

Single-phase systems: (a) two-wire type, (b) three-wire type.

Figure 12.3 Three-phase four-wire system. 9/6/2014

polyphase Circuits or systems in which the ac sources operate at the same frequency but different phases-

Why 30: (Can take 10, 20, or multiples of 30 @ Instantaneous power is constant (no pulsating) (3) Less wire required -> economical.

12.2) Balanced Three-phase Voltages:

What is 30:

Figure 12.5

The generated voltages are 120° apart from each other.

X30 Sources:

Balanced phase voltages are equal in magnitude and are out of phase with each other by 120°.

Figure 12.7

Phase sequences: (a) abc or positive sequence, (b) acb or negative sequence.

Balanced 30:

$$|\mathbf{V}_{an}| + |\mathbf{V}_{bn}| + |\mathbf{V}_{cn}| = 0$$
 because the angles are 128 $|\mathbf{V}_{an}| = |\mathbf{V}_{bn}| = |\mathbf{V}_{cn}|$

Figure 12.6

Three-phase voltage sources: (a) Y-connected source, (b) Δ -connected source.

3\$ Loads:

A balanced load is one in which the phase impedances are equal in magnitude and in phase.

Figure 12.8

Two possible three-phase load configurations: (a) a Y-connected load, (b) a Δ-connected load.

Example 12.1

Determine the phase sequence of the set of voltages

$$v_{\alpha n} = 200 \cos(\omega t + 10^{\circ})$$

 $v_{bn} = 200 \cos(\omega t - 230^{\circ}), \qquad v_{cn} = 200 \cos(\omega t - 110^{\circ})$

Solution:

The voltages can be expressed in phasor form as

$$V_{an} = 200/10^{\circ} V$$
, $V_{bn} = 200/-230^{\circ} V$, $V_{cn} = 200/-110^{\circ} V$

We notice that $V_{\alpha n}$ leads $V_{\alpha n}$ by 120° and $V_{\alpha n}$ in turn leads V_{bn} by 120° . Hence, we have an acb sequence.

* Four Source - Load Configurations:

- Y-Y connection (i.e., Y-connected source with a Y-connected load).
- Y-Δ connection.
- Δ - Δ connection.
- Δ-Y connection.

12.3 Balanced Wye-Wye Connection:

A balanced Y-Y system is a three-phase system with a balanced Y-connected source and a balanced Y-connected load.

Figure 12.9

A balanced Y-Y system, showing the source, line, and load impedances.

Figure 12.10

Balanced Y-Y connection.

(b)

Figure 12.11 (a)

Phasor diagrams illustrating the relationship between line voltages and phase voltages.

* Y-Y Currents:

$$\mathbf{I}_{a} = \frac{\mathbf{V}_{an}}{\mathbf{Z}_{y}} \qquad \mathbf{I}_{b} = \frac{\mathbf{V}_{bn}}{\mathbf{Z}_{y}} = \frac{\mathbf{V}_{an}/-120^{\circ}}{\mathbf{Z}_{y}} = \mathbf{I}_{a}/-120^{\circ} \qquad \mathbf{I}_{c} = \frac{\mathbf{V}_{cn}}{\mathbf{Z}_{y}} = \frac{\mathbf{V}_{an}/-240^{\circ}}{\mathbf{Z}_{y}} = \mathbf{I}_{a}/-240^{\circ} \qquad \mathbf{I}_{c} = \mathbf{I}_{c}/-240^{\circ} \qquad \mathbf{I}_{c} = \mathbf{I}_{c}/-240^{\circ} \qquad \mathbf{I}_{c} = \mathbf{I}_{c}/-240^{\circ} \qquad \mathbf{I}_{c} = \mathbf{I}_{c}/-240^{\circ} \qquad \mathbf{I}$$

$$\mathbf{I}_n = -(\mathbf{I}_a + \mathbf{I}_b + \mathbf{I}_c) = 0$$

$$\mathbf{V}_{nN} = \mathbf{Z}_n \mathbf{I}_n = 0$$

* Alternative way to solve Y-Y systems: (single-phase)

$$\mathbf{I}_{\alpha} = \frac{\mathbf{V}_{\alpha n}}{\mathbf{Z}_{Y}}$$

Figure 12.12

A single-phase equivalent circuit.

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.

Example 12.2

Figure 12.13

Three-wire Y-Y system; for Example 12.2.

Solution:

The three-phase circuit in Fig. 12.13 is balanced; we may replace it with its single-phase equivalent circuit such as in Fig. 12.12. We obtain I_{α} from the single-phase analysis as

$$\mathbf{I}_{\alpha} = rac{\mathbf{V}_{lpha n}}{\mathbf{Z}_{Y}}$$

where $\mathbf{Z}_{Y} = (5 - j2) + (10 + j8) = 15 + j6 = 16.155/21.8^{\circ}$. Hence,

$$\mathbf{I}_{\alpha} = \frac{110 / 0^{\circ}}{16.155 / 21.8^{\circ}} = 6.81 / -21.8^{\circ} \,\mathbf{A}$$

Since the source voltages in Fig. 12.13 are in positive sequence, the line currents are also in positive sequence:

$$I_b = I_{\alpha} / -120^{\circ} = 6.81 / -141.8^{\circ} A$$

$$I_c = I_{\alpha} / -240^{\circ} = 6.81 / -261.8^{\circ} A = 6.81 / 98.2^{\circ} A$$

12. 4 Balanced Wye-Delta Connection:

A balanced Y- Δ system consists of a balanced Y-connected source feeding a balanced Δ -connected load.

$$-\mathbf{V}_{ab} = \sqrt{3}V_{p}/30^{\circ} = \mathbf{V}_{AB}, \quad \mathbf{V}_{bc} = \sqrt{3}V_{p}/-90^{\circ} = \mathbf{V}_{BC}$$
$$-\mathbf{V}_{ca} = \sqrt{3}V_{p}/-150^{\circ} = \mathbf{V}_{CA}$$

$$\mathbf{I}_{AB}=rac{\mathbf{V}_{AB}}{\mathbf{Z}_{\Delta}}, \qquad \mathbf{I}_{BC}=rac{\mathbf{V}_{BC}}{\mathbf{Z}_{\Delta}}, \qquad \mathbf{I}_{CA}=rac{\mathbf{V}_{CA}}{\mathbf{Z}_{\Delta}}$$

Figure 12.14

Balanced Y- Δ connection.

$$\mathbf{I}_{a} = \mathbf{I}_{AB} - \mathbf{I}_{CA}, \qquad \mathbf{I}_{b} = \mathbf{I}_{BC} - \mathbf{I}_{AB}, \qquad \mathbf{I}_{c} = \mathbf{I}_{CA} - \mathbf{I}_{BC}$$

$$I_{\alpha} = I_{AB} - I_{CA} = I_{AB}(1 - 1/-240^{\circ}) - I_{AB}(1 + 0.5 - j0.866) = I_{AB}\sqrt{3}/-30^{\circ} - I_{AB}\sqrt{3}/-30^{\circ}$$

$$I_L = \sqrt{3}I_p$$

Figure 12.15

Phasor diagram illustrating the relationship between phase and line currents.

* Alternative way to solve Y- \D system:

1) transform & load to Y load.

$$\mathbf{Z}_{y} = \frac{\mathbf{Z}_{\Delta}}{3}$$

Figure 12.16

A single-phase equivalent circuit of a balan ced Y- Δ circuit.

A balanced *abc*-sequence Y-connected source with $V_{an} = 100/10^{\circ} \text{ V}$ is connected to a Δ -connected balanced load (8 + j4) Ω per phase. Calculate the phase and line currents.

Example 12.3

Solution:

This can be solved in two ways.

■ METHOD 1 The load impedance is

$$\mathbf{Z}_{\Delta} = 8 + j4 = 8.944/26.57^{\circ} \Omega$$

If the phase voltage $V_{an} = 100/10^{\circ}$, then the line voltage is

$$\mathbf{V}_{ab} = \mathbf{V}_{an} \sqrt{3} / 30^{\circ} = 100 \sqrt{3} / 10^{\circ} + 30^{\circ} = \mathbf{V}_{AB}$$

or

$$V_{AB} = 173.2/40^{\circ} \text{ V}$$

The phase currents are

$$I_{AB} = \frac{V_{AB}}{Z_{\Delta}} = \frac{173.2/40^{\circ}}{8.944/26.57^{\circ}} = 19.36/13.43^{\circ} \text{ A}$$

$$I_{BC} = I_{AB}/-120^{\circ} = 19.36/-106.57^{\circ} \text{ A}$$

$$I_{CA} = I_{AB}/+120^{\circ} = 19.36/133.43^{\circ} \text{ A}$$

The line currents are

$$I_{\alpha} = I_{AB}\sqrt{3}/-30^{\circ} = \sqrt{3}(19.36)/13.43^{\circ} - 30^{\circ}$$

= 33.53/-16.57° A

$$I_{CA} = I_{AB} / + 120^{\circ} = 19.36 / 133.43^{\circ} A$$

The line currents are

$$I_{\alpha} = I_{AB}\sqrt{3}/-30^{\circ} = \sqrt{3}(19.36)/13.43^{\circ} - 30^{\circ}$$

$$= 33.53/-16.57^{\circ} A$$

$$I_{b} = I_{\alpha}/-120^{\circ} = 33.53/-136.57^{\circ} A$$

$$I_{c} = I_{\alpha}/+120^{\circ} = 33.53/103.43^{\circ} A$$

■ METHOD 2 Alternatively, using single-phase analysis,

$$I_{\alpha} = \frac{V_{\alpha n}}{Z_{\Delta}/3} = \frac{100/10^{\circ}}{2.981/26.57^{\circ}} = 33.54/-16.57^{\circ} A$$

as above. Other line currents are obtained using the abc phase sequence.

12.5 Balanced Delta-Delta Connection:

A balanced Δ - Δ system is one in which both the balanced source and balanced load are Δ -connected.

$$\mathbf{I}_a = \mathbf{I}_{AB} - \mathbf{I}_{CA}, \qquad \mathbf{I}_b = \mathbf{I}_{BC} - \mathbf{I}_{AB}, \qquad \mathbf{I}_c = \mathbf{I}_{CA} - \mathbf{I}_{BC}$$

A balanced Δ -connected load having an impedance $20 - j15 \Omega$ is connected to a Δ -connected, positive-sequence generator having $V_{ab} = 330/0^{\circ} \text{ V}$. Calculate the phase currents of the load and the line currents.

Example 12.4

Solution:

The load impedance per phase is

$$\mathbf{Z}_{\Delta} = 20 - j15 = 25 / -36.87^{\circ} \Omega$$

Since $\mathbf{V}_{\!\scriptscriptstyle A\!B}=\mathbf{V}_{\!\scriptscriptstyle a\!b}$, the phase currents are

$$I_{AB} = \frac{V_{AB}}{Z_{\Delta}} = \frac{330/0^{\circ}}{25/-36.87} = 13.2/36.87^{\circ} A$$

$$I_{BC} = I_{AB}/-120^{\circ} = 13.2/-83.13^{\circ} A$$

$$I_{CA} = I_{AB}/+120^{\circ} = 13.2/156.87^{\circ} A$$

For a delta load, the line current always lags the corresponding phase current by 30° and has a magnitude $\sqrt{3}$ times that of the phase current. Hence, the line currents are

$$I_{a} = I_{AB}\sqrt{3}/-30^{\circ} = (13.2/36.87^{\circ})(\sqrt{3}/-30^{\circ})$$

$$= 22.86/6.87^{\circ} A$$

$$I_{b} = I_{a}/-120^{\circ} = 22.86/-113.13^{\circ} A$$

$$I_{c} = I_{a}/+120^{\circ} = 22.86/126.87^{\circ} A$$

12.6 Balanced Delta-Wye Connection:

A balanced Δ -Y system consists of a balanced Δ -connected source feeding a balanced Y-connected load.

$$\mathbf{V}_{ab} = V_p \underline{/0^{\circ}}, \quad \mathbf{V}_{bc} = V_p \underline{/-120^{\circ}}$$
 $\mathbf{V}_{ca} = V_p \underline{/+120^{\circ}}$

$$\mathbf{I}_{\alpha} = \frac{V_p/\sqrt{3}/-30^{\circ}}{\mathbf{Z}_{Y}}$$

Figure 12.18 A balanced Δ -Y connection.

* Alternative way to solve 1 - Y system:

1) Transform the A source to Y source:

$$\mathbf{V}_{an} = \frac{V_p}{\sqrt{3}} / -30^{\circ}$$

$$V_{bn} = \frac{V_p}{\sqrt{3}} / -150^{\circ}, \qquad V_{cn} = \frac{V_p}{\sqrt{3}} / +90^{\circ}$$

Figure 12.19

Transforming a Δ -connected source to an equivalent Y-connected source.

2) Solve the single-phase system.

Figure 12.20

The single-phase equivalent circuit.

Example 12.5

A balanced Y-connected load with a phase impedance of $40 + j25 \Omega$ is supplied by a balanced, positive sequence Δ -connected source with a line voltage of 210 V. Calculate the phase currents. Use V_{ab} as reference.

Solution:

The load impedance is

$$\mathbf{Z}_{Y} = 40 + j25 = 47.17/32^{\circ} \Omega$$

and the source voltage is

$$\mathbf{V}_{ab} = 210/0^{\circ} \,\mathrm{V}$$

When the Δ -connected source is transformed to a Y-connected source,

$$V_{\text{cm}} = \frac{V_{\text{ab}}}{\sqrt{3}} / \!\!\!\! -30^{\circ} = 121.2 / \!\!\!\! -30^{\circ} \, \mathrm{V}$$

The line currents are

$$\mathbf{I}_{a} = \frac{\mathbf{V}_{an}}{\mathbf{Z}_{Y}} = \frac{121.2 / -30^{\circ}}{47.12 / 32^{\circ}} = 2.57 / -62^{\circ} \text{ A}$$

$$\mathbf{I}_{b} = \mathbf{I}_{a} / -120^{\circ} = 2.57 / -178^{\circ} \text{ A}$$

$$\mathbf{I}_{c} = \mathbf{I}_{a} / 120^{\circ} = 2.57 / 58^{\circ} \text{ A}$$

which are the same as the phase currents.

TABLE 12.1

Summary of phase and line voltages/currents for balanced three-phase systems.¹

odianiced ti	odianosa tinos prisso systems.			
— Connection	Phase voltages/currents	Line voltages/currents =		
	$\mathbf{V}_{an} = V_p/0^{\circ}$	$\mathbf{V}_{ab} = \sqrt{3} V_p / 30^{\circ}$		
	$\mathbf{V}_{bn} = V_{p} / -120^{\circ}$			
	$\mathbf{V}_{cn} = V_{p} / +120^{\circ}$	$\mathbf{V}_{ca} = \mathbf{V}_{ab} / + 120^{\circ}$		
	Same as line currents	$I_a = V_{an}/Z_Y$		
		$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$		
		$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$		
Υ-Δ	$\mathbf{V}_{an} = V_p / 0^{\circ}$	$\mathbf{V}_{ab} = \mathbf{V}_{AB} = \sqrt{3}V_p/30^{\circ}$		
	$\mathbf{V}_{bn} = V_p / \overline{-120^{\circ}}$	$\mathbf{V}_{bc} = \mathbf{V}_{BC} = \mathbf{V}_{ab} / -120^{\circ}$		
	$V_{cn} = V_p / +120^{\circ}$	$\mathbf{V}_{ca} = \mathbf{V}_{CA} = \mathbf{V}_{ab} / +120^{\circ}$		
	$\mathbf{I}_{AB} = \mathbf{V}_{AB}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_a = \mathbf{I}_{AB}\sqrt{3}/3$		
	$\mathbf{I}_{BC} = \mathbf{V}_{BC}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$		
	$\mathbf{I}_{\mathit{CA}} = \mathbf{V}_{\mathit{CA}}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$		
Δ - Δ	$\mathbf{V}_{ab} = V_p / 0^{\circ}$	Same as phase voltages		
	$\mathbf{V}_{bc} = V_p / -120^{\circ}$	_		
	$\mathbf{V}_{ca} = V_p / +120^{\circ}$			
	$\mathbf{I}_{AB} = \mathbf{V}_{ab}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_a = \mathbf{I}_{AB} \sqrt{3} / \frac{-30^{\circ}}{}$		
	$\mathbf{I}_{BC} = \mathbf{V}_{bc}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_b = \mathbf{I}_a / -120^{\circ}$		
	$\mathbf{I}_{CA} = \mathbf{V}_{ca}/\mathbf{Z}_{\Delta}$	$\mathbf{I}_c = \mathbf{I}_a / +120^{\circ}$		
Δ -Y	$\mathbf{V}_{ab} = V_p / 0^{\circ}$	Same as phase voltages		
	$\mathbf{V}_{bc} = V_p / -120^{\circ}$	_		
	$\mathbf{V}_{ca} = V_p / +120^{\circ}$	_		
	Same as line currents	$\mathbf{I}_a = \frac{V_p / -30^{\circ}}{\sqrt{3} \mathbf{Z}_V}$		
	Same as the currents			
		$egin{aligned} \mathbf{I}_b &= \mathbf{I}_a / -120^\circ \ \mathbf{I}_c &= \mathbf{I}_a / +120^\circ \end{aligned} \qquad -$		
		$\mathbf{I}_c = \mathbf{I}_a / \overline{+120^{\circ}}$		

¹ Positive or abc sequence is assumed.

12.7 Power in a Balanced System:

* The power per phase

$$P_p = V_p I_p \underbrace{\cos \theta}_{P \neq}$$

* The power perphase

$$Q_p = V_p I_p \sin \theta$$

 \star The power perphase $S_p = V_p I_p$

$$\star$$
 The power per phase $\mathbf{S}_{\scriptscriptstyle D} = P_{\scriptscriptstyle D} + jQ_{\scriptscriptstyle D} = \mathbf{V}_{\scriptscriptstyle D}\mathbf{I}_{\scriptscriptstyle D}^*$

* The total average power per phase $P = P_a + P_b + P_c = 3P_p = 3V_p I_p \cos\theta = \sqrt{3}V_L I_L \cos\theta$

* The total reactive power per phase $Q = 3V_p I_p \sin\theta = 3Q_p = \sqrt{3}V_L I_L \sin\theta$

* The total complex power perphase

$$\mathbf{S} = 3\mathbf{S}_p = 3\mathbf{V}_p \mathbf{I}_p^* = 3I_p^2 \mathbf{Z}_p = \frac{3V_p^2}{\mathbf{Z}_p^*}$$

$$\mathbf{S} = P + jQ = \sqrt{3}V_L I_L / \theta$$

A three-phase motor can be regarded as a balanced Y-load. A three-phase motor draws 5.6 kW when the line voltage is 220 V and the line current is 18.2 A. Determine the power factor of the motor.

Example 12.7

Solution:

The apparent power is

$$S = \sqrt{3}V_L I_L = \sqrt{3}(220)(18.2) = 6935.13 \text{ VA}$$

Since the real power is

$$P = S\cos\theta = 5600 \text{ W}$$

the power factor is

$$pf = \cos\theta = \frac{P}{S} = \frac{5600}{6935.13} = 0.8075$$

Two balanced loads are connected to a 240-kV rms 60-Hz line, as				
shown in Fig. 12.22(a). Load 1 draws 30 kW at a power factor of 0.6				
lagging, while load 2 draws 45 kVAR at a power factor of 0.8 lagging.				
Assuming the abc sequence, determine: (a) the complex, real, and reac-				
tive powers absorbed by the combined load, (b) the line currents, and				
(c) the kVAR rating of the three capacitors Δ -connected in parallel with				
the load that will raise the power factor to 0.9 lagging and the capac-				
itance of each capacitor				

Solution:

(a) For load 1, given that $P_1 = 30 \text{ kW}$ and $\cos \theta_1 = 0.6$, then $\sin \theta_1 = 0.8$. Hence,

$$S_1 = \frac{P_1}{\cos \theta_1} = \frac{30 \text{ kW}}{0.6} = 50 \text{ kVA}$$

and $Q_1 = S_1 \sin \theta_1 = 50(0.8) = 40 \text{ kVAR}$. Thus, the complex power due to load 1 is

$$\mathbf{S}_1 = P_1 + jQ_1 = 30 + j40 \text{ kVA}$$
 (12.8.1)

Combined load

For load 2, if $Q_2=45$ kVAR and $\cos\theta_2=0.8$, then $\sin\theta_2=0.6$. We find

$$S_2 = \frac{Q_2}{\sin \theta_2} = \frac{45 \text{ kVA}}{0.6} = 75 \text{ kVA}$$

and $P_2 = S_2 \cos \theta_2 = 75(0.8) = 60$ kW. Therefore the complex power due to load 2 is

$$\mathbf{S}_2 = P_2 + jQ_2 = 60 + j45 \text{ kVA}$$
 (12.8.2)

Example 12.8

From Eqs. (12.8.1) and (12.8.2), the total complex power absorbed by the load is

$$S = S_1 + S_2 = 90 + j85 \text{ kVA} = 123.8/43.36^{\circ} \text{ kVA}$$
 (12.8.3)

which has a power factor of $\cos 43.36^{\circ} = 0.727$ lagging. The real power is then 90 kW, while the reactive power is 85 kVAR.

(b) Since $S = \sqrt{3}V_L I_L$, the line current is

$$I_L = \frac{S}{\sqrt{3}V_T} \tag{12.8.4}$$

We apply this to each load, keeping in mind that for both loads, V_L 240 kV. For load 1,

$$I_{L1} = \frac{50,000}{\sqrt{3} 240,000} = 120.28 \text{ mA}$$

Since the power factor is lagging, the line current lags the line voltage by $\theta_1 = \cos^{-1} 0.6 = 53.13^{\circ}$. Thus,

$$I_{\alpha 1} = 120.28 / -53.13^{\circ}$$

For load 2,

$$I_{L2} = \frac{75,000}{\sqrt{3} 240,000} = 180.42 \,\mathrm{mA}$$

and the line current lags the line voltage by $\theta_2 = \cos^{-1} 0.8 = 36.87^{\circ}$. Hence,

$$I_{a2} = 180.42/-36.87^{\circ}$$

The total line current is

$$\mathbf{I}_{\alpha} = \mathbf{I}_{\alpha 1} + \mathbf{I}_{\alpha 2} = 120.28 / -53.13^{\circ} + 180.42 / -36.87^{\circ}$$
$$= (72.168 - j96.224) + (144.336 - j108.252)$$
$$= 216.5 - j204.472 = 297.8 / -43.36^{\circ} \, \text{mA}$$

Alternatively, we could obtain the current from the total complex power using Eq. (12.8.4) as

$$I_L = \frac{123,800}{\sqrt{3} 240,000} = 297.82 \,\text{mA}$$

$$I_{\alpha} = 297.82/-43.36^{\circ} \,\text{mA}$$

which is the same as before. The other line currents, I_{b2} and I_{ca} , can be obtained according to the *abc* sequence (i.e., $I_b = 297.82 / 163.36^\circ$ mA and $I_c = 297.82 / 76.64^\circ$ mA).

(c) We can find the reactive power needed to bring the power factor to 0.9 lagging using Eq. (11.59),

$$Q_C = P(\tan\theta_{\rm old} - \tan\theta_{\rm new})$$

where P = 90 kW, $\theta_{\rm old} = 43.36^{\circ}$, and $\theta_{\rm new} = \cos^{-1} 0.9 = 25.84^{\circ}$. Hence,

$$Q_C = 90,000(\tan 43.36^\circ - \tan 25.84^\circ) = 41.4 \text{ kVAR}$$

This reactive power is for the three capacitors. For each capacitor, the rating $Q'_{C} = 13.8$ kVAR. From Eq. (11.60), the required capacitance is

$$C = \frac{Q_C'}{\omega V_{\rm rms}^2}$$

Since the capacitors are Δ -connected as shown in Fig. 12.22(b), $V_{\rm rms}$ in the above formula is the line-to-line or line voltage, which is 240 kV. Thus,

$$C = \frac{13,800}{(2\pi60)(240,000)^2} = 635.5 \text{ pF}$$